Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals

نویسنده

  • Elif Derya Übeyli
چکیده

An approach based on the consideration that electrocardiogram (ECG) signals are chaotic signals was presented for automated diagnosis of electrocardiographic changes. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Recurrent neural network (RNN) was implemented and used as basis for detection of variabilities of ECG signals. Four types of ECG beats (normal beat, congestive heart failure beat, ventricular tachyarrhythmia beat, atrial fibrillation beat) obtained from the PhysioBank database were classified. Decision making was performed in two stages: computing features which were then input into the RNN and classification using the RNN trained with the Levenberg–Marquardt algorithm. The research demonstrated that the Lyapunov exponents are the features which are well representing the ECG signals and the RNN trained on these features achieved high classification accuracies. 2009 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recurrent neural networks employing Lyapunov exponents for EEG signals classification

There are a number of different quantitative models that can be used in a medical diagnostic decision support system including parametric methods, non-parametric methods and several neural network models. Unfortunately, there is no theory available to guide model selection. The aim of this study is to evaluate the diagnostic accuracy of the recurrent neural networks (RNNs) employing Lyapunov ex...

متن کامل

Combined Neural Network Model for Detection of Electrocardiographic Changes in Partial Epileptic Patients

A combined neural network model based on the consideration that electrocardiogram (ECG) signals are chaotic signals was presented for detection of electrocardiographic changes in patients with partial epilepsy. This consideration was tested successfully using the nonlinear dynamics tools, like the computation of Lyapunov exponents. Two types of ECG beats (normal and partial epilepsy) were obtai...

متن کامل

Analysis of Chaotic Signals: Non-linear Methods versus Neural Networks

Applications of Non-linear Methods and Neural Networks in the analysis of chaotic signals are compared in the paper. Results of time series analysis by non-linear methods are illustrated by computations of Lyapunov exponents and correlation dimension. Abilities of Neural networks are demonstrated in reconstruction of chaotic attractors, in generation of chaos and in the classification and model...

متن کامل

Classification of ECG signals using Hermite functions and MLP neural networks

Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010